# Figuring out angles between transversal and parallel lines | Geometry | Khan Academy

Let’s say that we have
two parallel lines. So that’s one line
right over there, and then this is
the other line that is parallel to the first one. I’ll draw it as
parallel as I can. So these two lines are parallel. This is the symbol
right over here to show that these two
lines are parallel. And then let me draw
a transversal here. So let me draw a transversal. This is also a line. Now, let’s say that we know
that this angle right over here is 110 degrees. What other angles can
we figure out here? Well, the first thing
that we might realize is that, look, corresponding
angles are equivalent. This angle, the angle
between this parallel line and the transversal,
is going to be the same as the angle
between this parallel line and the transversal. So this right over here is
also going to be 110 degrees. Now, we also know that
vertical angles are equivalent. So if this is 110
degrees, then this angle right over here on the opposite
side of the intersection is also going to be 110 degrees. And we could use that
same logic right over here to say that if this
is 110 degrees, then this is also 110 degrees. We could’ve also
said that, look, this angle right over here
corresponds to this angle right over here so that they
also will have to be the same. Now, what about
these other angles? So this angle right over
here, its outside ray, I guess you could
say, forms a line with this angle right over here. This pink angle is supplementary
to this 110 degree angle. So this pink angle plus 110
is going to be equal to 180. Or we know that this pink angle
is going to be 70 degrees. And then we know that it’s a
vertical angle with this angle right over here, so
this is also 70 degrees. This angle that’s kind of
right below this parallel line with the transversal, the bottom
left, I guess you could say, corresponds to this bottom
left angle right over here. So this is also 70 degrees. And we could’ve also
figured that out by saying, hey, this angle is supplementary
to this angle right over here. And then we could use
multiple arguments. The vertical angle argument,
the supplementary argument two ways, or the corresponding
angle argument to say that, hey, this must be
70 degrees as well.

• SkwurrelllCheakz says:

not gonna say it

• alex gulbeyan says:

love these running throughout my feed 🙂

• operationTF7 says:

Thanks, I have a unit assessment on Friday and you made me one review question closer to getting a good grade on it!

• Sara_King_beauty says:

Thanks!

• Draco Black says:

whenever i here this guys voice i imagine myself sleeping on a cloud with a boner

• Asly58 says:

im learning this in seventh grade

• Josh Snathosh says:

I am learning a lot

• Joshua Wang says:

Nice video. Still got a bad grade because I forgot to review the vocabulary. 🙁

• Avalon Younger-Howard says:

But he didn't explain how he got 70 degrees 😕.

• Avalon Younger-Howard says:

Never mind I figured it out😂

• FaiZ_1128 says:

these single handedly are getting me through 10th grade geometry

• εωαη says:

This is very helpful, unless you have a question with decimals and fraction at the same time in it, which is what I have.

• Daniel Geiger says:

Is it bad if I learn this in 7th grade or is this normal

• Levi Rathel says:

Thanks!

• Tissanya Lee says:

Thanks i understand a lot better

• Quirky Llamas says:

What if it doesn't give you any measures

• Chiily Dog says:

What app/software are you using to draw these?

• Arhum Sajid says:

Thanks man, this was very helpful. In class I didn't have a clue what was going on my teacher was talking about all sorts of things such as f pattern, c pattern, etc. This is very simple and easy to understand.

• Scott Martin says:

Thanks khan for a fabulous lesson! helped me with my studying tonight!

• Ubaid Ejaz says:

Thanks you so much

• My90s r fast says:

my mans doing gods work

• Slxxpy Jan says:

yes i get it! thanks

• Erick Anguiano says:

epic!!!! mAATHSS!